LC 121 - Best Time to Buy and Sell Stock
Question
You are given an array prices where prices[i] is the price of a given stock on the ith day.
You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.
Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.
Example 1:
1
2
Input: prices = [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5. Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
Example 2:
1
2
Input: prices = [7,6,4,3,1]
Output: 0
Explanation: In this case, no transactions are done and the max profit = 0.
Constraints:
1 <= prices.length <= 1050 <= prices[i] <= 104
Links
Question here and solution here
Solution
concept
We will use a two-pointer method to solve this problem. Left pointer = buy, Right pointer = Sell Fix a buy price and find the maximum sell price, if detected a price that is lower than the current buy price, update the buy price, and the current possible max profit by this buy price is recorded in max_profit
code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class Solution(object):
"""
two-pointers
while loop
"""
def maxProfit(self, prices):
# left pointer = buy
# right pointer = sell
l, r = 0, 1
max_profit = 0
while r < len(prices):
if prices[l] < prices[r]:
profit = prices[r] - prices[l]
max_profit = max(max_profit, profit)
else:
l = r
r += 1
return max_profit
class Solution:
"""
two pointers
for loop
"""
def maxProfit(self, prices: List[int]) -> int:
profit = 0
l = 0
for r in range(1, len(prices)):
if prices[r] > prices[l]:
profit = max(profit, prices[r] - prices[l])
else:
l = r
return profit
Complexity
time: $O(n)$
space: $O(1)$